2024中考数学复习知识点和解题方法

来自 阿奇 分享 时间: 加入收藏 我要投稿 点赞

  同学们在中考取得好成绩,不仅要记牢数学定理、公式和概念,还要把这些知识运用到我们的解题,并做到在题目中举一反三。同学们会问,小阅有中考数学解题实用的复习知识点和方法吗?小阅已为大家准备好了。fnB阅下文库

  点 线 角fnB阅下文库

  点的定理:过两点有且只有一条直线fnB阅下文库

  点的定理:两点之间线段最短fnB阅下文库

  角的定理:同角或等角的补角相等fnB阅下文库

  角的定理:同角或等角的余角相等fnB阅下文库

  直线定理:过一点有且只有一条直线和已知直线垂直fnB阅下文库

  直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短fnB阅下文库

  几何平行fnB阅下文库

  平行定理:经过直线外一点,有且只有一条直线与这条直线平行fnB阅下文库

  推论:如果两条直线都和第三条直线平行,这两条直线也互相平行fnB阅下文库

  证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行fnB阅下文库

  两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补fnB阅下文库

  三角形定理fnB阅下文库

  定理:三角形两边的和大于第三边fnB阅下文库

  推论:三角形两边的差小于第三边fnB阅下文库

  三角形内角和定理:三角形三个内角的和等于180°fnB阅下文库

  全等三角形fnB阅下文库

  定理:全等三角形的对应边、对应角相等fnB阅下文库

  边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等fnB阅下文库

  角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等fnB阅下文库

  推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等fnB阅下文库

  边边边定理(SSS):有三边对应相等的两个三角形全等fnB阅下文库

  斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等fnB阅下文库

  角平分线fnB阅下文库

  定理1:在角的平分线上的点到这个角的两边的距离相等fnB阅下文库

  定理2:到一个角的两边的距离相同的点,在这个角的平分线上fnB阅下文库

  角的平分线是到角的两边距离相等的所有点的集合fnB阅下文库

  等腰三角形fnB阅下文库

  等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)fnB阅下文库

  推论1:等腰三角形顶角的平分线平分底边并且垂直于底边fnB阅下文库

  等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合fnB阅下文库

  等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)fnB阅下文库

  对称定理fnB阅下文库

  定理:线段垂直平分线上的点和这条线段两个端点的距离相等fnB阅下文库

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上fnB阅下文库

  线段的垂直平分线可看作和线段两端点距离相等的所有点的集合fnB阅下文库

  定理1:关于某条直线对称的两个图形是全等形fnB阅下文库

  定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线fnB阅下文库

  定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上fnB阅下文库

  逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称fnB阅下文库

  直角三角形fnB阅下文库

  定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半fnB阅下文库

  判定定理:直角三角形斜边上的中线等于斜边上的一半fnB阅下文库

  勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2fnB阅下文库

  勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形fnB阅下文库

  多边形内角定理fnB阅下文库

  定理:四边形的内角和等于360°;四边形的外角和等于360°fnB阅下文库

  多边形内角和定理:n边形的内角和等于(n-2)×180°fnB阅下文库

  推论:任意多边的外角和等于360°fnB阅下文库

  平行四边形定理fnB阅下文库

  平行四边形性质定理:fnB阅下文库

  1.平行四边形的对角相等fnB阅下文库

  2.平行四边形的对边相等fnB阅下文库

  3.平行四边形的对角线互相平分fnB阅下文库

  推论:夹在两条平行线间的平行线段相等fnB阅下文库

  平行四边形判定定理:fnB阅下文库

  1.两组对角分别相等的四边形是平行四边形fnB阅下文库

  2.两组对边分别相等的四边形是平行四边形fnB阅下文库

  3.对角线互相平分的四边形是平行四边形fnB阅下文库

  4.一组对边平行相等的四边形是平行四边形fnB阅下文库

  矩形定理fnB阅下文库

  矩形性质定理1:矩形的四个角都是直角fnB阅下文库

  矩形性质定理2:矩形的对角线相等fnB阅下文库

  矩形判定定理1:有三个角是直角的四边形是矩形fnB阅下文库

  矩形判定定理2:对角线相等的平行四边形是矩形fnB阅下文库

  菱形定理fnB阅下文库

  菱形性质定理1:菱形的四条边都相等fnB阅下文库

  菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角fnB阅下文库

  菱形面积=对角线乘积的一半,即S=(a×b)÷2fnB阅下文库

  菱形判定定理1:四边都相等的四边形是菱形fnB阅下文库

  菱形判定定理2:对角线互相垂直的平行四边形是菱形fnB阅下文库

  正方形定理fnB阅下文库

  正方形性质定理1:正方形的四个角都是直角,四条边都相等fnB阅下文库

  正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角fnB阅下文库

  中心对称定理fnB阅下文库

  定理1:关于中心对称的两个图形是全等的fnB阅下文库

  定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分fnB阅下文库

  逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称fnB阅下文库

  等腰梯形性质定理fnB阅下文库

  等腰梯形性质定理:fnB阅下文库

  1.等腰梯形在同一底上的两个角相等fnB阅下文库

  2.等腰梯形的两条对角线相等fnB阅下文库

  等腰梯形判定定理:fnB阅下文库

  1.在同一底上的两个角相等的梯形是等腰梯形fnB阅下文库

  2.对角线相等的梯形是等腰梯形fnB阅下文库

  平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等fnB阅下文库

  推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰fnB阅下文库

  推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边fnB阅下文库

  中位线定理fnB阅下文库

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半fnB阅下文库

  梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×hfnB阅下文库

  相似三角形定理fnB阅下文库

  相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似fnB阅下文库

  相似三角形判定定理:fnB阅下文库

  1.两角对应相等,两三角形相似(ASA)fnB阅下文库

  2.两边对应成比例且夹角相等,两三角形相似(SAS)fnB阅下文库

  直角三角形被斜边上的高分成的两个直角三角形和原三角形相似fnB阅下文库

  判定定理3:三边对应成比例,两三角形相似(SSS)fnB阅下文库

  相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似fnB阅下文库

  性质定理:fnB阅下文库

  1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比fnB阅下文库

  2.相似三角形周长的比等于相似比fnB阅下文库

  3.相似三角形面积的比等于相似比的平方fnB阅下文库

  三角函数定理fnB阅下文库

  任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值fnB阅下文库

  任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值fnB阅下文库

  圆的定理fnB阅下文库

  定理:过不共线的三个点,可以作且只可以作一个圆fnB阅下文库

  定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧fnB阅下文库

  推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧fnB阅下文库

  推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧fnB阅下文库

  推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧fnB阅下文库

  定理:fnB阅下文库

  1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等fnB阅下文库

  2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线fnB阅下文库

  3.圆的切线垂直经过切点的半径fnB阅下文库

  4.三角形的三个内角平分线交于一点,这点是三角形的内心fnB阅下文库

  5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角fnB阅下文库

  6.圆的外切四边形的两组对边的和相等fnB阅下文库

  7.如果四边形两组对边的和相等,那么它必有内切圆fnB阅下文库

  8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等fnB阅下文库

  比例性质定理fnB阅下文库

  比例的基本性质fnB阅下文库

  如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dfnB阅下文库

  合比性质fnB阅下文库

  如果a/b=c/d,那么(a±b)/b=(c±d)/dfnB阅下文库

  等比性质fnB阅下文库

  如果a/b=c/d=…=m/n(b+d+…+n≠0),fnB阅下文库

  那么(a+c+…+m)/(b+d+…+n)=a/bfnB阅下文库

   1、配方法fnB阅下文库

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。fnB阅下文库

  2、因式分解法fnB阅下文库

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。fnB阅下文库

  3、换元法fnB阅下文库

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。fnB阅下文库

  4、判别式法与韦达定理fnB阅下文库

  一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。fnB阅下文库

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。fnB阅下文库

  5、待定系数法fnB阅下文库

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。fnB阅下文库

  6、构造法fnB阅下文库

  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。fnB阅下文库

221381
领取福利

微信扫码领取福利

微信扫码分享