鲁教版初二数学上册教案

来自 阿奇 分享 时间: 加入收藏 我要投稿 点赞

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。一起看看鲁教版初二数学上册教案!欢迎查阅!Q8U阅下文库

鲁教版初二数学上册教案1Q8U阅下文库

教材分析Q8U阅下文库

1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。Q8U阅下文库

2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。Q8U阅下文库

学情分析Q8U阅下文库

1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。Q8U阅下文库

2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。Q8U阅下文库

3、学生认知障碍点:根据问题信息写出一次函数的表达式。Q8U阅下文库

教学目标Q8U阅下文库

1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。Q8U阅下文库

2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。Q8U阅下文库

3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。Q8U阅下文库

教学重点和难点Q8U阅下文库

1、一次函数、正比例函数的概念及关系。Q8U阅下文库

2、会根据已知信息写出一次函数的表达式。Q8U阅下文库

鲁教版初二数学上册教案2Q8U阅下文库

教学目标Q8U阅下文库

1.知识与技能Q8U阅下文库

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.Q8U阅下文库

2.过程与方法Q8U阅下文库

经历探索一次函数的应用问题,发展抽象思维.Q8U阅下文库

3.情感、态度与价值观Q8U阅下文库

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.Q8U阅下文库

重、难点与关键Q8U阅下文库

1.重点:一次函数的应用.Q8U阅下文库

2.难点:一次函数的应用.Q8U阅下文库

3.关键:从数形结合分析思路入手,提升应用思维.Q8U阅下文库

教学方法Q8U阅下文库

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.Q8U阅下文库

教学过程Q8U阅下文库

一、范例点击,应用所学Q8U阅下文库

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.Q8U阅下文库

y=Q8U阅下文库

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和25元,现C乡需要肥料250吨,D乡需要肥料260吨,怎样调运总运费最少?Q8U阅下文库

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(250-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(200-x)+15(250-x)+25(60+x),即y=4x+10040(0≤x≤200).Q8U阅下文库

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡250吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.Q8U阅下文库

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?Q8U阅下文库

二、随堂练习,巩固深化Q8U阅下文库

课本P119练习.Q8U阅下文库

三、课堂总结,发展潜能Q8U阅下文库

由学生自我评价本节课的表现.Q8U阅下文库

四、布置作业,专题突破Q8U阅下文库

课本P120习题14.2第9,10,11题.Q8U阅下文库

板书设计Q8U阅下文库

14.2.2一次函数(4)Q8U阅下文库

1、一次函数的应用例:Q8U阅下文库

鲁教版初二数学上册教案3Q8U阅下文库

一、教学目标Q8U阅下文库

1.了解二次根式的意义;Q8U阅下文库

2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;Q8U阅下文库

3. 掌握二次根式的性质 和 ,并能灵活应用;Q8U阅下文库

4.通过二次根式的计算培养学生的逻辑思维能力;Q8U阅下文库

5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.Q8U阅下文库

二、教学重点和难点Q8U阅下文库

重点:(1)二次根的意义;(2)二次根式中字母的取值范围.Q8U阅下文库

难点:确定二次根式中字母的取值范围.Q8U阅下文库

三、教学方法Q8U阅下文库

启发式、讲练结合.Q8U阅下文库

四、教学过程Q8U阅下文库

(一)复习提问Q8U阅下文库

1.什么叫平方根、算术平方根?Q8U阅下文库

2.说出下列各式的意义,并计算Q8U阅下文库

(二)引入新课Q8U阅下文库

新课:二次根式Q8U阅下文库

定义: 式子 叫做二次根式.Q8U阅下文库

对于 请同学们讨论论应注意的问题,引导学生总结:Q8U阅下文库

(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?Q8U阅下文库

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.Q8U阅下文库

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次Q8U阅下文库

根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.Q8U阅下文库

例1 当a为实数时,下列各式中哪些是二次根式?Q8U阅下文库

例2 x是怎样的实数时,式子 在实数范围有意义?Q8U阅下文库

解:略.Q8U阅下文库

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.Q8U阅下文库

例3 当字母取何值时,下列各式为二次根式:Q8U阅下文库

(1) (2) (3) (4)Q8U阅下文库

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.Q8U阅下文库

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.Q8U阅下文库

(2)-3x≥0,x≤0,即x≤0时, 是二次根式.Q8U阅下文库

(3) ,且x≠0,∴x>0,当x>0时, 是二次根式.Q8U阅下文库

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.Q8U阅下文库

例4 下列各式是二次根式,求式子中的字母所满足的条件:Q8U阅下文库

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.Q8U阅下文库

解:(1)由2a+3≥0,得 .Q8U阅下文库

(2)由 ,得3a-1>0,解得 .Q8U阅下文库

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.Q8U阅下文库

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.Q8U阅下文库

鲁教版初二数学上册教案4Q8U阅下文库

教学目标Q8U阅下文库

1.等腰三角形的概念. 2.等腰三角形的性质. 3.等腰三角形的概念及性质的应用.Q8U阅下文库

教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.Q8U阅下文库

教学难点:等腰三角形三线合一的性质的理解及其应用.Q8U阅下文库

教学过程Q8U阅下文库

Ⅰ.提出问题,创设情境Q8U阅下文库

在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?Q8U阅下文库

有的三角形是轴对称图形,有的三角形不是.Q8U阅下文库

问题:那什么样的三角形是轴对称图形?Q8U阅下文库

满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.Q8U阅下文库

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Q8U阅下文库

Ⅱ.导入新课: 要求学生通过自己的思考来做一个等腰三角形.Q8U阅下文库

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.Q8U阅下文库

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.Q8U阅下文库

思考:Q8U阅下文库

1.等腰三角形是轴对称图形吗?请找出它的对称轴.Q8U阅下文库

2.等腰三角形的两底角有什么关系?Q8U阅下文库

3.顶角的平分线所在的直线是等腰三角形的对称轴吗?Q8U阅下文库

4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?Q8U阅下文库

结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.Q8U阅下文库

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.Q8U阅下文库

沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.Q8U阅下文库

由此可以得到等腰三角形的性质:Q8U阅下文库

1.等腰三角形的两个底角相等(简写成“等边对等角”).Q8U阅下文库

2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).Q8U阅下文库

由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).Q8U阅下文库

如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为Q8U阅下文库

所以△BAD≌△CAD(SSS).Q8U阅下文库

所以∠B=∠C.Q8U阅下文库

]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为Q8U阅下文库

所以△BAD≌△CAD.Q8U阅下文库

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.Q8U阅下文库

[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,Q8U阅下文库

求:△ABC各角的度数.Q8U阅下文库

分析:根据等边对等角的性质,我们可以得到Q8U阅下文库

∠A=∠ABD,∠ABC=∠C=∠BDC,Q8U阅下文库

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.Q8U阅下文库

再由三角形内角和为180°,就可求出△ABC的三个内角.Q8U阅下文库

把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.Q8U阅下文库

解:因为AB=AC,BD=BC=AD,Q8U阅下文库

所以∠ABC=∠C=∠BDC.Q8U阅下文库

∠A=∠ABD(等边对等角).Q8U阅下文库

设∠A=x,则 ∠BDC=∠A+∠ABD=2x,Q8U阅下文库

从而∠ABC=∠C=∠BDC=2x.Q8U阅下文库

于是在△ABC中,有Q8U阅下文库

∠A+∠ABC+∠C=x+2x+2x=180°,Q8U阅下文库

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.Q8U阅下文库

[师]下面我们通过练习来巩固这节课所学的知识.Q8U阅下文库

Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结.Q8U阅下文库

Ⅳ.课时小结Q8U阅下文库

这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.Q8U阅下文库

我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Q8U阅下文库

Ⅴ.作业: 课本P56习题12.3第1、2、3、4题.Q8U阅下文库

板书设计Q8U阅下文库

12.3.1.1 等腰三角形Q8U阅下文库

一、设计方案作出一个等腰三角形Q8U阅下文库

二、等腰三角形性质: 1.等边对等角 2.三线合一Q8U阅下文库

鲁教版初二数学上册教案5Q8U阅下文库

教学目标Q8U阅下文库

1、 理解并掌握等腰三角形的判定定理及推论Q8U阅下文库

2、 能利用其性质与判定证明线段或角的相等关系.Q8U阅下文库

教学重点: 等腰三角形的判定定理及推论的运用Q8U阅下文库

教学难点: 正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.Q8U阅下文库

教学过程:Q8U阅下文库

一、复习等腰三角形的性质Q8U阅下文库

二、新授:Q8U阅下文库

I提出问题,创设情境Q8U阅下文库

出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.Q8U阅下文库

学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.Q8U阅下文库

II引入新课Q8U阅下文库

1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?Q8U阅下文库

作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?Q8U阅下文库

2.引导学生根据图形,写出已知、求证.Q8U阅下文库

2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).Q8U阅下文库

强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.Q8U阅下文库

4.引导学生说出引例中地质专家的测量方法的根据.Q8U阅下文库

III例题与练习Q8U阅下文库

1.如图2Q8U阅下文库

其中△ABC是等腰三角形的是 [ ]Q8U阅下文库

2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).Q8U阅下文库

②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).Q8U阅下文库

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.Q8U阅下文库

④若已知 AD=4cm,则BC______cm.Q8U阅下文库

3.以问题形式引出推论l______.Q8U阅下文库

4.以问题形式引出推论2______.Q8U阅下文库

例: 如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.Q8U阅下文库

分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.Q8U阅下文库

练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?Q8U阅下文库

(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?Q8U阅下文库

练习:P53练习1、2、3。Q8U阅下文库

IV课堂小结Q8U阅下文库

1.判定一个三角形是等腰三角形有几种方法?Q8U阅下文库

2.判定一个三角形是等边三角形有几种方法?Q8U阅下文库

3.等腰三角形的性质定理与判定定理有何关系?Q8U阅下文库

4.现在证明线段相等问题,一般应从几方面考虑?Q8U阅下文库

V布置作业:P56页习题12.3第5、6题Q8U阅下文库

Q8U阅下文库

Q8U阅下文库

221381
领取福利

微信扫码领取福利

微信扫码分享